Math 241

Problem Set 7 solution manual

Exercise. A7.1

a- Consider the following table:

o	1	$(12)(34)$	$(13)(24)$	$(14)(23)$
1	1	$(12)(34)$	$(13)(24)$	$(14)(23)$
$(12)(34)$	$(12)(34)$	1	$(14)(23)$	$(13)(24)$
$(13)(24)$	$(13)(24)$	$(14)(23)$	1	$(12)(34)$
$(14)(23)$	$(14)(23)$	$(13)(24)$	$(12)(34)$	1

Notice that each element is the inverse of itself (each element is of order 2). So this note, together with the above table shows that H is a subgroup.
Now to show that H is normal notice that for any $\sigma \in S_{4}$ we have $\sigma(i j)(k l) \sigma^{-1}=\sigma(i j)\left(\sigma^{-1} \sigma\right)(k l) \sigma^{-1}=$ $\left(\sigma(i j) \sigma^{-1}\right)\left(\sigma(k l) \sigma^{-1}\right)=(\sigma(i) \sigma(j))(\sigma(k) \sigma(l))$ which is again an element of H.
This shows that H is a normal subgroup of S_{4}.
b- H is isomorphic to klein4 group since it is an abelian group of order 4 , and each element is of order 2. (the table shows that H is abelian)
c- Let us first calculate the cosets of H in S_{4},
we have :
$H=H_{0}$
$(12) H=\{(12),(34),(1324),(1423)\}=H(12)=H_{1}$
$(13) H=\{(13),(1234),(24),(1432)\}=H(13)=H_{2}$
$(23) H=\{(23),(1342),(1243),(14)\}=H_{3}$
(123) $H=\{(123),(134),(243),(142)\}=H_{4}$
$(132) H=\{(132),(234),(124),(143)\}=H_{5}$
and call elements of $S_{3}, i d=a_{0},(12)=a_{1},(13)=a_{2},(23)=a_{3},(123)=a_{4},(132)=a_{5}$.
Then we define the map f from $\frac{S_{4}}{H} \longrightarrow S_{3}$ by $f\left(H_{i}\right)=a_{i}$
It is easy to see that f is a bijection by definition of f. Moreover, f homomorphism follows directly from the multiplication of cosets, since H is normal.
Hence we have an isomorphism between $\frac{S_{4}}{H}$ and S_{3}.
Section. 14
Exercise. 2

Notice that the order of $\mathbb{Z}_{4} \times \mathbb{Z}_{12}$ is 48 , and the order of the subgroup $<2>$ in \mathbb{Z}_{4} is 2 , and the order of $<2>$ in \mathbb{Z}_{12} is 6 . Hence the order of $<2>\times<2>$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{12}$ is 12 .

So the order of the group is: $\frac{\left|\mathbb{Z}_{4} \times \mathbb{Z}_{12}\right|}{|<2>\times<2>|}=\frac{48}{12}=4$.

Exercise. 6

Notice that the order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is 216 , and the order of the subgroup $<(4,3)>$ in $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is 6 . $(r .(4,3)=0 \Leftrightarrow 4 r \equiv 0 \bmod (12), 3 r \equiv 0 \bmod (18), \Leftrightarrow r \equiv 0 \bmod (3)$, and $r \equiv 0 \bmod (6) \Leftrightarrow r \equiv 0$ $\bmod (6)$.)

So the order of the group is: $\frac{\left|\mathbb{Z}_{12} \times \mathbb{Z}_{18}\right|}{|<(4,3)>|}=\frac{216}{6}=36$.
Exercise. 9
First we find the subgroup $<4>=\{0,4,8\}$
Notice that $r+12 \mathbb{Z} \in<4>\Leftrightarrow r \equiv 0 \bmod (4)$. Then r. $(5+<4>)=0+<4>\Leftrightarrow 5 r=0 \bmod (4)$ $\Leftrightarrow r=0 \bmod (4)$,hence the order of $5+<4>$ is 4 .

Or you can use main defintion of order (the order of $5+\langle 4\rangle$ is the smallest positive number n such that
$n(5+<4>)=<4>$.)
$2(5+<4>)=(5+<4>)+(5+<4>)=10+<4>$,
$3(5+<4>)=(5+<4>)+(5+<4>)+(5+<4>)=15+\langle 4\rangle=2+\langle 4\rangle$,
$4(5+<4\rangle)=8+\langle 4\rangle=\langle 4\rangle$.
Hence we deduce that the order of $(5+\langle 4\rangle)$ in $\frac{\mathbb{Z}_{12}}{\langle 4\rangle}$ is 4 .
Exercise. 10
First we find the subgroup $<12>=\{0,12,24,36,48\}$
Notice that $r+60 \mathbb{Z} \in<12>\Leftrightarrow r \equiv 0 \bmod (12)$. Then $r .(2+<12>)=0+<12>\Leftrightarrow 2 r=0$ $\bmod (12) \Leftrightarrow r=0 \bmod (6)$,hence the order of $2+<12>$ is 6 .

Or using the definiton the order of $26+<12>$ is the smallest positive number n such that $n(26+<12>)=<12>$
$2(2+<12>)=(2+<12>)+(2+<12>)=4+<12>$,
$3(2+<12>)=(2+<12>)+(2+<12>)+(2+<12>)=6+<12>$,
$4(2+<12>)=8+<12>$,
$5(2+<12>)=10+<12>$,
$6(2+<12>)=12+<12>=<12>$.
Hence we deduce that the order of $(26+<12>)$ in $\frac{Z_{60}}{<12>}$ is 6 .

Exercise. 12

First we find the subgroup $<(1,1)>=\{(0,0),(1,1),(2,2),(3,3)\}$
Then we know that the order of $(3,1)+<(1,1)>$ is the smallest positive number n such that $n((3,1)+<(1,1)>)=<(1,1)>$ $2((3,1)+\langle(1,1)>)=((3,1)+<(1,1)>)+((3,1)+<(1,2)>)=(2,2)+<(1,1)\rangle=<(1,1)>$.

Hence we deduce that the order of $(26+<12>)$ in $\frac{\mathbb{Z}_{4} \times \mathbb{Z}_{4}}{\langle(1,1)\rangle}$ is 2 .
Exercise. 30
m is the order of $(G: H)$ then any element $A \in \frac{G}{H}$ has an order divisible by m, and hence for any $a \in G, a H \in \frac{G}{H}$ then $(a H)^{m}=H$, but $a^{m} H=(a H)^{m}$ so $a^{m} \in H$.

Exercise. 31

Let $\left\{H_{1}, H_{2}, H_{3}, \ldots H_{n}\right\}$ be a collection of normal subgroups of G. We already know that $H=\bigcap_{i} H_{i}$ is a subgroup of G, so we only need to show it is normal.

We want to prove $g H^{-1} \subset H$, so let $h \in H$, then $h \in H_{i}$ for all i, and hence since each H_{i} is normal subgroup then $g h g^{-1} \in H_{i}$ for all i. This implies $g h g^{-1} \in H$, so we deduce that H is a normal subgroup.

Exercise. 32
First we let $\mathcal{X}=\{H \mid H$ is a normal subgroup of G containing $S\}$ (we know that this is a non empty set since $G \in \mathcal{X}$).

Next we consider the subgroup $N=\bigcap_{H \in \mathcal{X}} H$, then N contains S, and by the previous problem we know that N is a normal subgroup of G. Moreover, suppose K is another normal subgroup that contain S, then $K \in \mathcal{X}$, and hence by the definition of $N, N \subset K$.

So our N is the smallest normal subgroup that contain S.
Exercise. 33
Let $a C, b C \in \frac{G}{C}$, and notice that $(a C)^{-1}=a^{-1} C$.
$(a C)(b C)(a C)^{-1}(b C)^{-1}=(a b) C\left(a^{-1} b^{-1}\right) C=\left(a b a^{-1} b^{-1}\right) C=C$ since $a b a^{-1} b^{-1} \in C$. This implies that for all $a, b(a C)(b C)=(b C)(a C)$. Hence $\frac{G}{C}$ is abelian.

Section. 15

Exercise. 1

The order of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is equal to 8 , and the order of $(0,1)$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is 4 , hence the order of $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{4}}{\langle(0,1)\rangle}$ is 2 , so the qoutient must be isomorphic to \mathbb{Z}_{2}.
Exercise. 3
The order of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is equal to 8 , and the order of $(1,2)$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is 2 , hence the order of $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{4}}{\langle(0,1)\rangle}$ is 4 , so it must be isomorphic to either \mathbb{Z}_{4}, or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, but notice that all the elements in $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{4}}{\langle(0,1)\rangle}$ are of order 2 , which implies that it is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Exercise. 7

Consider the map f defined from $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ by $f((a, b))=2 a-b$
It is easy to see that f is a group homomorphism, which is surjective because $f(0,-n)=n$ for all $n \in \mathbb{Z}$
The kernel of $f=\{(a, b) \mid 2 a=b\}=\{(a, 2 a) \mid a \in \mathbb{R}\}=\{a(1,2) \mid a \in \mathbb{R}\}=<(1,2)>$.
Finally we deduce from the above that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(1,2)\rangle} \cong \mathbb{Z}$, since $\frac{\mathbb{Z} \times \mathbb{Z}}{\text { Kerf }} \cong \operatorname{Imf}$
Exercise. 8
consider the map g defined from $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ by $g((a, b, c))=(a-b, a-c)$
It is easy to see that g is a group homomorphism, which is surjective because $g(0,-m,-n)=(m, n)$ for all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$. The kernel of $g=\{(a, b, c) \mid a=b, a=c\}=\{(a, a, a) \mid a \in \mathbb{Z}\}$ $=\{a(1,1,1) \mid a \in \mathbb{R}\}=<(1,1,1)>$.

Finally we deduce from the above that $\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{\langle(1,1,1)>} \cong \mathbb{Z} \times \mathbb{Z}$ as in ex 7 .
Exercise. 12
consider the map h defined from $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}_{3} \times \mathbb{Z} \times \mathbb{Z}$ by $h((a, b, c))=(a+3 \mathbb{Z}, a-b, a-c)$ It is easy to see that h is a group homomorphism, which is surjective because $h(m, m-n, m-p)=$ $(m+3 \mathbb{Z}, n, p)$. The kernel of $h=\{(a, b, c) \mid a=0 \bmod (3), a=b, a=c\}$ $=\{(a, a, a) \mid a \in \mathbb{Z}, a \in 3 \mathbb{Z}\}=<(3,3,3)>$.

Finally we deduce from the above that $\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{\langle(3,3,3)>} \cong \mathbb{Z}_{3} \times \mathbb{Z} \times \mathbb{Z}$ as in ex7.

Exercise. 35

N is a normal subgroup of G, we want to prove that $\phi(N)$ is normal in $\phi(G)$, so for any $y \in \phi(G)$ we need to prove $y \phi(N) y^{-1} \subset \phi(N)$.
So let $y \in \phi(G)$, and $n^{\prime} \in \phi(N)$, we need to show that $y n^{\prime} y^{-1} \in \phi(N)$, but we know that $y \in \phi(G)$ then there exist $x \in G$ such that $\phi(x)=y$ also since $n^{\prime} \in \phi(N)$ there exists $n \in N$ such that $\phi(n)=n^{\prime}$, hence $y n^{\prime} y^{-1}=\phi(x) \phi(n) \phi(x)^{-1}=\phi\left(x n x^{-1}\right) \in \phi(N)$ since $\left(x n x^{-1} \in N\right)$

So we conclude that $\phi(N)$ is a normal subgroup of $\phi(G)$.
Exercise. 36
N^{\prime} is normal, we need to prove that $\phi^{-1}\left(N^{\prime}\right)$ is normal, so we need to prove that $g \phi^{-1}\left(N^{\prime}\right) g^{-1} \subset \phi^{-1}\left(N^{\prime}\right)$ for all $g \in G$.
So let $g \in G$, and $n \in \phi^{-1}\left(N^{\prime}\right)$ then $\phi(g), \phi(n) \in G^{\prime}$ then since N^{\prime} is normal $\phi(g) \phi(n) \phi(g)^{-1} \in N^{\prime}$, which implies that $\phi\left(g n g^{-1}\right) \in N^{\prime}$ which implies that $g n g^{-1} \in \phi^{-1}\left(N^{\prime}\right)$.

So we conclude that $\phi^{-1}\left(N^{\prime}\right)$ is a normal subgroup.

