Math 241

Problem Set 7 solution manual

Exercise. A7.1

a- Consider the following table:

0	1	(12)(34)	(13)(24)	(14)(23)
1	1	(12)(34)	(13)(24)	(14)(23)
(12)(34)	(12)(34)	1	(14)(23)	(13)(24)
(13)(24)	(13)(24)	(14)(23)	1	(12)(34)
(14)(23)	(14)(23)	(13)(24)	(12)(34)	1

Notice that each element is the inverse of itself (each element is of order 2). So this note, together with the above table shows that H is a subgroup.

Now to show that H is normal notice that for any $\sigma \in S_4$ we have $\sigma(ij)(kl)\sigma^{-1} = \sigma(ij)(\sigma^{-1}\sigma)(kl)\sigma^{-1} = \sigma(ij)(\sigma^{-1}\sigma)(kl)\sigma^{-1}$ $(\sigma(ij)\sigma^{-1})(\sigma(kl)\sigma^{-1}) = (\sigma(i)\sigma(j))(\sigma(k)\sigma(l))$ which is again an element of H.

This shows that H is a normal subgroup of S_4 .

- b- H is isomorphic to klein4 group since it is an abelian group of order 4, and each element is of order 2. (the table shows that H is abelian)
- c- Let us first calculate the cosets of H in S_4 ,

we have : $H = H_0$ $(12)H = \{(12), (34), (1324), (1423)\} = H(12) = H_1$ $(13)H = \{(13), (1234), (24), (1432)\} = H(13) = H_2$ $(23)H = \{(23), (1342), (1243), (14)\} = H_3$ $(123)H = \{(123), (134), (243), (142)\} = H_4$ $(132)H = \{(132), (234), (124), (143)\} = H_5$

and call elements of S_3 , $id = a_0$, $(12) = a_1$, $(13) = a_2$, $(23) = a_3$, $(123) = a_4$, $(132) = a_5$. Then we define the map f from $\frac{S_4}{H} \longrightarrow S_3$ by $f(H_i) = a_i$ It is easy to see that f is a bijection by definition of f. Moreover, f homomorphism follows directly from the multiplication of cosets, since H is normal.

Hence we have an isomorphism between $\frac{S_4}{H}$ and S_3 .

Section. 14

Exercise. 2

Notice that the order of $\mathbb{Z}_4 \times \mathbb{Z}_{12}$ is 48, and the order of the subgroup $\langle 2 \rangle$ in \mathbb{Z}_4 is 2, and the order of $\langle 2 \rangle$ in \mathbb{Z}_{12} is 6. Hence the order of $\langle 2 \rangle \times \langle 2 \rangle$ in $\mathbb{Z}_4 \times \mathbb{Z}_{12}$ is 12. So the order of the group is: $\frac{|\mathbb{Z}_4 \times \mathbb{Z}_{12}|}{|\langle 2 \rangle \times \langle 2 \rangle|} = \frac{48}{12} = 4.$

Exercise. 6

Notice that the order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is 216, and the order of the subgroup $\langle (4,3) \rangle$ in $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is 6. $(r.(4,3) = 0 \Leftrightarrow 4r \equiv 0 \mod(12), 3r \equiv 0 \mod(18), \Leftrightarrow r \equiv 0 \mod(3), and r \equiv 0 \mod(6) \Leftrightarrow r \equiv 0 \mod(6)$.)

So the order of the group is: $\frac{|\mathbb{Z}_{12} \times \mathbb{Z}_{18}|}{|<(4,3)>|} = \frac{216}{6} = 36.$

Exercise. 9

First we find the subgroup $\langle 4 \rangle = \{0, 4, 8\}$ Notice that $r + 12\mathbb{Z} \in \langle 4 \rangle \Leftrightarrow r \equiv 0 \mod(4)$. Then $r.(5+\langle 4 \rangle) = 0+\langle 4 \rangle \Leftrightarrow 5r = 0 \mod(4)$ $\Leftrightarrow r = 0 \mod(4)$, hence the order of $5+\langle 4 \rangle$ is 4.

Or you can use main definition of order (the order of 5+ < 4 > is the smallest positive number n such that

 $\begin{array}{l} n(5+<4>)=<4>.)\\ 2(5+<4>)=(5+<4>)+(5+<4>)=10+<4>,\\ 3(5+<4>)=(5+<4>)+(5+<4>)+(5+<4>)=15+<4>=2+<4>,\\ 4(5+<4>)=8+<4>=<4>. \end{array}$

Hence we deduce that the order of (5+ < 4 >) in $\frac{\mathbb{Z}_{12}}{<4>}$ is 4.

Exercise. 10

First we find the subgroup $\langle 12 \rangle = \{0, 12, 24, 36, 48\}$ Notice that $r + 60\mathbb{Z} \in \langle 12 \rangle \Leftrightarrow r \equiv 0 \mod(12)$. Then $r.(2+\langle 12 \rangle) = 0+\langle 12 \rangle \Leftrightarrow 2r = 0 \mod(12) \Leftrightarrow r = 0 \mod(6)$, hence the order of $2+\langle 12 \rangle$ is 6.

Or using the definiton the order of 26+ < 12 > is the smallest positive number n such that n(26+ < 12 >) = < 12 >

 $\begin{array}{l} 2(2+<12>)=(2+<12>)+(2+<12>)=4+<12>,\\ 3(2+<12>)=(2+<12>)+(2+<12>)+(2+<12>)=6+<12>,\\ 4(2+<12>)=8+<12>,\\ 5(2+<12>)=10+<12>,\\ 6(2+<12>)=12+<12>=<12>.\\ \text{Hence we deduce that the order of } (26+<12>) \text{ in } \frac{\mathbb{Z}_{60}}{<12>} \text{ is } 6. \end{array}$

Exercise. 12

First we find the subgroup $\langle (1,1) \rangle = \{(0,0), (1,1), (2,2), (3,3)\}$ Then we know that the order of $(3,1)+ \langle (1,1) \rangle$ is the smallest positive number n such that $n((3,1)+ \langle (1,1) \rangle) = \langle (1,1) \rangle$

 $\begin{array}{l} 2((3,1)+<(1,1)>)=((3,1)+<(1,1)>)+((3,1)+<(1,2)>)=(2,2)+<(1,1)>=<(1,1)>.\\ \text{Hence we deduce that the order of }(26+<12>)\text{ in }\frac{\mathbb{Z}_{4}\times\mathbb{Z}_{4}}{<(1,1)>}\text{ is }2. \end{array}$

Exercise. 30

m is the order of (G:H) then any element $A \in \frac{G}{H}$ has an order divisible by m, and hence for any $a \in G$, $aH \in \frac{G}{H}$ then $(aH)^m = H$, but $a^mH = (aH)^m$ so $a^m \in H$.

Exercise. 31

Let $\{H_1, H_2, H_3, \dots, H_n\}$ be a collection of normal subgroups of G. We already know that $H = \bigcap H_i$ is a subgroup of G, so we only need to show it is normal.

We want to prove $gHg^{-1} \subset H$, so let $h \in H$, then $h \in H_i$ for all i, and hence since each H_i is normal subgroup then $ghg^{-1} \in H_i$ for all i. This implies $ghg^{-1} \in H$, so we deduce that H is a normal subgroup.

Exercise. 32

First we let $\mathcal{X} = \{H \mid H \text{ is a normal subgroup of } G \text{ containing } S\}$ (we know that this is a non empty set since $G \in \mathcal{X}$).

Next we consider the subgroup $N = \bigcap_{H \in \mathcal{X}} H$, then N contains S, and by the previous problem we know that N is a normal subgroup of G. Moreover, suppose K is another normal subgroup that contain S, then $K \in \mathcal{X}$, and hence by the definition of $N, N \subset K$.

So our N is the smallest normal subgroup that contain S.

Exercise. 33

Let $aC, bC \in \frac{G}{C}$, and notice that $(aC)^{-1} = a^{-1}C$. $(aC)(bC)(aC)^{-1}(bC)^{-1} = (ab)C(a^{-1}b^{-1})C = (aba^{-1}b^{-1})C = C$ since $aba^{-1}b^{-1} \in C$. This implies that for all a, b (aC)(bC) = (bC)(aC). Hence $\frac{G}{C}$ is abelian.

Section. 15

Exercise. 1

The order of $\mathbb{Z}_2 \times \mathbb{Z}_4$ is equal to 8, and the order of (0,1) in $\mathbb{Z}_2 \times \mathbb{Z}_4$ is 4, hence the order of $\frac{\mathbb{Z}_2 \times \mathbb{Z}_4}{\langle (0,1) \rangle}$ is 2, so the qoutient must be isomorphic to \mathbb{Z}_2 .

Exercise. 3

The order of $\mathbb{Z}_2 \times \mathbb{Z}_4$ is equal to 8, and the order of (1,2) in $\mathbb{Z}_2 \times \mathbb{Z}_4$ is 2, hence the order of $\frac{\mathbb{Z}_2 \times \mathbb{Z}_4}{\langle (0,1) \rangle}$ is 4, so it must be isomorphic to either \mathbb{Z}_4 , or $\mathbb{Z}_2 \times \mathbb{Z}_2$, but notice that all the elements in $\frac{\mathbb{Z}_2 \times \mathbb{Z}_4}{\langle (0,1) \rangle}$ are of order 2, which implies that it is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Exercise. 7

Consider the map f defined from $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ by f((a, b)) = 2a - b

It is easy to see that f is a group homomorphism, which is surjective because f(0, -n) = n for all $n \in \mathbb{Z}$

The kernel of $f = \{(a, b) \mid 2a = b\} = \{(a, 2a) \mid a \in \mathbb{R}\} = \{a(1, 2) \mid a \in \mathbb{R}\} = \langle (1, 2) \rangle$. Finally we deduce from the above that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle (1, 2) \rangle} \cong \mathbb{Z}$, since $\frac{\mathbb{Z} \times \mathbb{Z}}{Kerf} \cong Imf$

Exercise. 8

consider the map g defined from $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ by g((a, b, c)) = (a - b, a - c)It is easy to see that g is a group homomorphism, which is surjective because g(0, -m, -n) = (m, n) for all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$. The kernel of $g = \{(a, b, c) \mid a = b, a = c\} = \{(a, a, a) \mid a \in \mathbb{Z}\}$ $= \{a(1, 1, 1) \mid a \in \mathbb{R}\} = \langle (1, 1, 1) \rangle$.

Finally we deduce from the above that $\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{\langle (1,1,1) \rangle} \cong \mathbb{Z} \times \mathbb{Z}$ as in ex 7.

Exercise. 12

consider the map h defined from $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$ by $h((a, b, c)) = (a + 3\mathbb{Z}, a - b, a - c)$ It is easy to see that h is a group homomorphism, which is surjective because $h(m, m - n, m - p) = (m + 3\mathbb{Z}, n, p)$. The kernel of $h = \{(a, b, c) \mid a = 0 \mod(3), a = b, a = c\}$ $= \{(a, a, a) \mid a \in \mathbb{Z}, a \in 3\mathbb{Z}\} = \langle (3, 3, 3) \rangle$.

Finally we deduce from the above that $\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{\langle (3,3,3) \rangle} \cong \mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$ as in ex7.

Exercise. 35

N is a normal subgroup of G, we want to prove that $\phi(N)$ is normal in $\phi(G)$, so for any $y \in \phi(G)$ we need to prove $y\phi(N)y^{-1} \subset \phi(N)$.

So let $y \in \phi(G)$, and $n' \in \phi(N)$, we need to show that $yn'y^{-1} \in \phi(N)$, but we know that $y \in \phi(G)$ then there exist $x \in G$ such that $\phi(x) = y$ also since $n' \in \phi(N)$ there exists $n \in N$ such that $\phi(n) = n'$, hence $yn'y^{-1} = \phi(x)\phi(n)\phi(x)^{-1} = \phi(xnx^{-1}) \in \phi(N)$ since $(xnx^{-1} \in N)$

So we conclude that $\phi(N)$ is a normal subgroup of $\phi(G)$.

Exercise. 36

N' is normal, we need to prove that $\phi^{-1}(N')$ is normal, so we need to prove that $g\phi^{-1}(N')g^{-1} \subset \phi^{-1}(N')$ for all $g \in G$. So let $a \in C$ and $n \in \phi^{-1}(N')$ then $\phi(a), \phi(n) \in C'$ then since N' is normal $\phi(a)\phi(n)\phi(n)$.

So let $g \in G$, and $n \in \phi^{-1}(N')$ then $\phi(g), \phi(n) \in G'$ then since N' is normal $\phi(g)\phi(n)\phi(g)^{-1} \in N'$, which implies that $\phi(gng^{-1}) \in N'$ which implies that $gng^{-1} \in \phi^{-1}(N')$.

So we conclude that $\phi^{-1}(N')$ is a normal subgroup.